Comparison of Hierarchical and Non-Hierarchical Clustering Algorithms

Fidan Kaya Gülağız and Suhap Şahin

Department of Computer Engineering, Kocaeli University, Kocaeli, İzmit, 41380 Turkey

fidan.kaya@kocaeli.edu.tr, suhapsahin@kocaeli.edu.tr

ABSTRACT

As a result of wide use of technology, large data volumes began to emerge. Analyzes on this big size data and obtain knowledge in it very difficult with simple methods. So data mining methods has risen. One of these methods is clustering. Clustering is an unsupervised data mining technique and groups data according to similarities between records. The goal of cluster analysis is finding subclasses that occur naturally in the data set. There are too many different methods improved for data clustering. Performance of these methods can be changed according to data set or number of records in dataset etc. In this study we evaluate clustering methods using different datasets. Results are compared by considering different parameters such as result similarity, number of steps, processing time etc. At the end of the study methods are also analyzed to show the appropriate data set conditions for each method.

Keywords: Data Mining, Hierarchical Clustering, Non-Hierarchical Clustering, Centroid Similarity.

1. INTRODUCTION

Computer systems are developing each passing day and also become cheaper. Processors are getting faster and disk capacities increase as well. Computers can store more data and process them in less time. Furthermore, the data can be accessed quickly with advances in computer networks from other computers [1]. As electronic devices are getting cheaper, their usage becomes widespread and so data in electronic environment is growing rapidly. But these data aren’t meaningful when they aren’t processed by a specific method. Data mining is defined as a process that useful or meaningful information are distinguished from large data [2]. There are many models that can be used to obtain useful information in data mining. These models can be grouped under three main headings. These can be listed as classification, clustering and association rules [3].Classification models are considered as estimator models, clustering and association rules are also considered as identifier models [4]. For estimator models it is aimed to develop a model of which results are known. This developed model is being used to estimate result values for data clusters of which results are not known. For identifier models it is provided to identify of pattern at present data that can be used to guide for decision making. Clustering model among identifier models provides to separate groups according to their calculated similarities by taking into consideration specific characteristics of data. Many methods can be used during calculation of similarities. Some of these methods are: Euclidean Distance, Manhattan Distance and Minkowski Distance [5]. First aim of usage of distance methods is to obtain similarity according to distance between data which is not grouped. Thus, similar data can be included in the same cluster. To imply clustering analysis it is assumed that data should be normal distribution. However this is just theoretical assumption and is ignored in practice. Only the suitability of the calculated distance values to normal distribution is considered [6].

There are many developed clustering methods in data mining. Methods are being selected according to cluster number and data attribute that will be clustered. Clustering methods are divided in two categories. These are hierarchical clustering and non-hierarchical clustering methods. Hierarchical clustering methods have two different classes. These are agglomerative and divisive approaches. Non-hierarchical clustering methods are also divided four sub-classes; partitioning, density-based, grid-based and other approaches [7]. The general architecture of clustering methods is shown in Figure 1.

![Fig. 1. Categorization of clustering algorithms [8].](image-url)
If used clustering algorithm forms clusters gradually, it is belonged to hierarchical class. The algorithms of the hierarchical class gather the most similar two objects in a cluster. This has very high process cost because all objects are compared before every clustering step. Agglomerative approach is called as bottom to top approach. In this approach, data points set clusters as combining with each other [8]. Divisive approach has contrary process and is called top to bottom. Required calculation load by divisive and agglomerative approaches are similar [9].

Clustering algorithms in non-hierarchical category cluster the data directly. Such algorithms generally change centers until all points are related to centers [9]. K-Means algorithm is given the most common example of partitioning approach. Fuzzy C-Means and K-Medoids algorithms are also sort of K-Means algorithms. When it is compared with hierarchical classification, non-hierarchical classification is low cost in terms of calculation time. Because distance of all point and related centers are calculated consecutively until all centers are minimized and this is a high cost process [10].

Density based clustering approach is also another non-hierarchical clustering approach. Density based clustering algorithms consider intensive data spaces as cluster, so have no problem in finding clusters with random shapes. Among the best known density based clustering algorithms; it is regarded DBSCAN (Density-based spatial clustering of applications with noise) and OPTICS (Ordering points to identify the clustering structure) algorithms. Grid based clustering approach takes into consideration the cells rather than data points. Because of this feature, grid based clustering algorithms are generally more effective as all computational clustering algorithms [11].

In this study, it was conducted to compare the performance of clustering methods on different data sets. K-Means, K-Medoids and Farthest First Clustering algorithms are used for hierarchical clustering and DBSCAN was used for density based clustering. It was determined how these algorithms realize the clustering accuracy and effectiveness with evaluation parameters such processing time, difference rate of centers and total error rate. The rest of the paper is organized as follows. In section II, clustering algorithms are given. The third section explains datasets and evaluation metrics that used for performance analysis. Section IV presents experimental results. Conclusion and some future enhancements are given at the last section.

2. CLUSTERING ALGORITHMS

In the scope of this study performance evaluation of K-Means, K-Medoids, Farthest First Clustering and Density Based Clustering algorithms was made. For this purpose, seven different data sets in UCI Data Repository were used. Also both Iterative K-Means and Iterative Multi K-Means versions of K-Means algorithm were included in the comparison. In this section clustering algorithms are explained in detail.

2.1 K-Means Algorithm

K-Means algorithm processes with the thought that new clusters should be formed according to distance between points and center of clusters. Distance between elements of data set and center of clusters also give error rate of clustering. K-Means algorithm consists of four basic steps [12]. These are;

- Determination of centers.
- Assigning points to clusters which are outside of the centers according to distance between centers and points.
- Calculation of new centers.
- Repeating these steps until obtaining decided clusters.

The biggest problem of K-Means algorithm is determination of starting points. If initially a bad choice is made, many changes will be at the clustering period and in this case for each time different clustering results can even be obtained with the same number of iterations. At the same time if dimensions of data groups are different, density of data groups will be different or If there is contrariety in data, algorithm may not get good results. Besides the complexity of K-Means algorithm is less than other methods, the implementation of this algorithm is easy. Pseudo code of K-Means algorithm is shown in Figure 2.

Input: k // Desired number of clusters

$D = \{x_1, x_2, ..., x_n\}$ // Set of elements

Output: $K = \{C_1, C_2, ..., C_k\}$ // Set of k clusters which minimizes the squared-error function

K-Means Algorithm

- Assign initial values for means point $\mu_1, \mu_2, ..., \mu_k$
- Repeat
 - Assign each item x_i to the cluster which has closest mean;
 - Calculate new mean for each cluster;

Fig. 2. Pseudo code for K-Means algorithm [13].
In our study, besides classical K-Means method, Iterative K-Means and Iterative Multi K-Means algorithms were analyzed. Iterative K-Means algorithm is different from classical K-Means algorithm. This algorithm processes according to two parameters. These are minimum number of clusters and maximum number of clusters. Algorithm takes these parameters as input to increase accuracy. Method works between minimum and maximum number range of K-Means algorithm and calculates a score value for each number of cluster. Number of clusters which have the highest score values, returns as a result. Iterative Multi K-Means algorithm is a developed version of Iterative K-Means algorithm in terms of iteration number. Here differently from Iterative K-Means algorithm, it aims to achieve best cluster number as working iterations in different numbers and to get best iteration value for this number of clusters.

2.2 K-Medoids Algorithm

Basis of K-Medoids algorithm is finding k representative objects that represents various structural attribute of data. Therefore, the method is called as K-Medoids or PAM (Partitioning Around Medoids). Representative objects in algorithm are called as medoids and these objects are the nearest points to center. The most commonly used K-Medoids algorithm, was developed by Kaufman and Rousseeuw in 1987 [14]. Representative objects that makes minimum the average distance of other objects is the most central object. Therefore, this division method is applied based on reduction of uniqueness between each object and its reference point.

\[
\text{Input: } k \quad // \text{Desired number of clusters}
\]
\[
D = \{x_1, x_2, ..., x_n\} \quad // \text{Set of elements}
\]
\[
\text{Output: } K: \text{A set of } k \text{ clusters which minimizes the sum of dissimilarities of all } n \text{ objects to their nearest } q\text{-th medoid } (q = 1,2,\ldots,k).
\]

K-Medoids Algorithm

Randomly choose \(k \) objects from the data set to be the cluster medoids at the initial state.

For each pair of non-selected object \(h \) and selected object \(i \), calculate the total swapping cost

For each pair of \(i \) and \(h \)

If cost < 0, \(i \) is replaced by \(h \)

Then assign each non-selected object to the most similar representative object.

Repeat steps 2 and 3 until no change happens.

Fig. 3. Pseudo code for K-Medoids/PAM algorithm [13].

In Figure 3 pseudo-code of K-Medoids algorithm is given. In this method, after choosing \(k \) representative objects, clusters are formed by assigning each object to nearest representative \(k \) objects [15]. For the next steps each representative objects are changed with each non-representative objects and this replacement continues until quality of clustering is improved. Cost function is used to evaluate the quality of clustering. This cost function calculates similarity between an object and its cluster. Also decision making process is performed according to the cost value which turns from cost function [16].

2.3 Farthest First Clustering

Farthest First Clustering algorithm is a speedy and greedy algorithm. It performs the clustering process in two stages such as K-Means algorithm. These are selection of centers and assigning the elements to these clusters. Initially, algorithm makes the process of selection of \(k \) centers.

Center of first cluster is being selected randomly. Center of second cluster is being selected the farthest point to center of first cluster. In this process a greedy approach is being used. The next center selections are performed by determination of the farthest points to selected centers of clusters greedily. After cluster determination process, the rest points are assigned to the closest clusters according to their distance [17]. In Figure 4 pseudo-code of Farthest First Clustering algorithm is given.

Farthest First Clustering algorithm is similar as a process to K-Means algorithm but in fact there are some different points from K-Means algorithm. While Farthest First Clustering algorithm makes assignment of the all elements to clusters at the same time, K-Means continues to process according to iteration number or until any changes aren’t made in clusters. Farthest First Clustering algorithm doesn’t need to update for centers. Because in K-Means algorithm center of clusters are geometric center of
cluster’s elements but in Farthest First Clustering algorithm centers are certain points and are determined for once. Farthest First Clustering algorithm even performs the selection of centers randomly and in one time, it has a good performance about this process.

\[
\text{Input: } k \quad \text{// Desired number of clusters} \\
D= \{x_1, x_2, \ldots, x_n\} \quad \text{// Set of elements} \\
\text{Output: } K=\{ C_1, C_2, \ldots, C_k \} \quad \text{// Set of } k \text{ clusters}
\]

Farthest First Algorithm

1. Randomly select first cluster;
2. For \(i=2, \ldots, k \)
 - For each remaining point
 - Calculate distance to the current center set;
 - Select the point that has maximum distance as new center;
 - For each remaining point
 - Calculate the distance to each center of clusters;
 - Put it to the cluster with minimum distance

Fig. 4. Pseudo code for Farthest First algorithm [17]

2.4 Density Based Clustering

DBSCAN (Density-based spatial clustering of applications with noise) algorithm is based on revealing the neighborhood of data points with each other in two or multi dimensional space. Database that is dealt with spatial perspective is mostly used to analyze of spatial data [18]. DBSCAN algorithm has two initial parameters. These are: \(\varepsilon \) (epsilon/eps) and \(\text{minPts} \) (required number to create a density region). Epsilon parameter is used to indicate closeness degree of points in the same cluster to each other. Algorithm starts from an arbitrary point which has not ever been visited. It finds the points at \(\varepsilon \) neighborhood points and forms a new cluster, if its number is enough. Otherwise this point is tagged as noise. It means that this point is not a center but it may be a point around \(\varepsilon \) distance to another cluster. According to the algorithm operating logic; if a point is determined as a density part/center of the cluster, this point is considered as an element of the cluster at \(\varepsilon \) neighborhood points. This process continues until all clusters related density is obtained. Finding neighborhood process is a part of DBSCAN algorithm which requires the most process power. In Figure 5 a pseudo code of DBSCAN algorithm is shown. To obtain accurate clusters at the DBSCAN algorithm, it is need to be obtained ideal values of eps parameter. If eps value is given so little value, only density clustering regions/core of clusters will be obtained. Otherwise undesirable clusters may form.

\[
\text{Input: } N \text{ objects to be clustered} \\
\text{Global parameters: } Eps, \text{ MinPts} \\
\text{Output: } \text{Clusters of objects}
\]

Density Based Algorithm

1. Arbitrary select a point \(P \);
2. Retrieve all points density-reachable from \(P \) wrt \(Eps \) and \(\text{MinPts} \);
3. If \(P \) is a core point, a cluster is formed.
4. If \(P \) is a noise point, no points are density-reachable from \(P \) and DBSCAN visits the next point of the database.
5. Continue the process until all of the points have been processed.

Fig. 5. Pseudo code for DBSCAN Algorithm [13]
3. DATASET and EVALUATION METRICS

Information about eight different datasets which are used in testing process of the clustering methods is given in Table 1. Data sets were obtained from UC Irvine Machine Learning Repository [18]. UC Irvine Machine Learning Repository is a data repository that was created by David Aha and his students in 1987 and contains many big data sets. During selection of data sets it was considered parameters such as related different areas, variance of record number and attribute numbers of the data. Iris and Wine data sets are the most commonly used data sets of UCI library. With variance of selected data sets it was provided that clustering algorithms were analyzed from different points.

Table 1: Summary description of data sets.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Number of Records</th>
<th>Number of Attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iris</td>
<td>150</td>
<td>4</td>
</tr>
<tr>
<td>Wine</td>
<td>178</td>
<td>13</td>
</tr>
<tr>
<td>Glass</td>
<td>214</td>
<td>10</td>
</tr>
<tr>
<td>Heart – Disease</td>
<td>303</td>
<td>13</td>
</tr>
<tr>
<td>Water Treatment Plant</td>
<td>527</td>
<td>38</td>
</tr>
<tr>
<td>Pima Indians</td>
<td>768</td>
<td>8</td>
</tr>
<tr>
<td>Isolet</td>
<td>7797</td>
<td>617</td>
</tr>
</tbody>
</table>

In the evaluating process of data sets, different evaluating methods can be used. Some of these methods can be listed as process time, sum of centroid similarities, sum of average pair wise similarities, sum of squared errors, AIC (Akaike’s Information Criterion) Score and BIC (Bayesian Information Criterion) Score.

Process time; refers to elapsed time for the clustering process.

Sum of centroid similarities; represents the distance of centers to each other. Any distance calculation method can be used to obtain distance.

Sum of average pair wise similarities (SOAPS); refers total distance of the points that matches in the different clusters (most similar/closest points in the different clusters) to each other. Any distance calculation method can be used.

Sum of squared errors (SSE); refers to total distances of points in the clusters from center of clusters.

AIC and BIC; are used to measure quality of a statistical model on a given data set. Low AIC and BIC values indicate that the model is closer to reality.

\[
SSE = \sum_{i=1}^{K} \sum_{x \in c_i} dist(x, c_i)^2 \tag{1}
\]

\[
AIC = -2 \log L + 2p \tag{2}
\]

\[
BIC = -2 \log L + \log(n)p \tag{3}
\]

In Formula (1), SSE calculation method formula is given. Here K Value represents cluster number; ci value represents center of i. cluster and x value also represents elements of the i. cluster. Formula of the AIC evaluation method is shown with Formula (2) and BIC evaluation method is shown with Formula (3). L value in Formula (2) and Formula (3) represents similarities calculation method, p value represents characteristic number in data set and n value represents the iteration number. AIC is better in situations when a false negative finding would be considered more misleading than a false positive, and BIC is better in situations where a false positive is as misleading as a false negative [20]. In the scope of this study process time, SSE and SOCS metrics are used as evaluation metrics and clustering methods were compared according to these parameters.

4. EXPERIMENTAL RESULTS

To evaluate the efficiency of the different clustering algorithms, some tests are realized. Experimental tests are realized on computer with Intel(R) Core(TM) i5-2410M CPU @ 2.30 GHz, 4 GB RAM, 350 GB hard disk and Windows 7 Ultimate operating system. While performing the tests, six different algorithms were used. Analysis of algorithms was made on seven different data sets as mentioned section 2. Test process of algorithms was carried out with Eclipse compiler and Java-ML (Java Machine Learning Library) was used for implementation of algorithms [21]. Table 2 shows results that contain process time of algorithms, Table 3 shows the similarity of centers and Table 4 shows results that contains total error rate of algorithms.
Process time of clustering algorithms is given in Table 2. When process time is compared in terms of data sets dimensions, generally process time of K-Medoids is more than other algorithms. When Farthest First Clustering algorithm and K-Means algorithm are compared, K-Means algorithm is narrowly faster but this difference is as second, so process time of both algorithms can be accepted same. It has been determined that between all algorithms, K-Medoids and DBSCAN algorithms require the most process time. In addition, in case of data set growth, increase in process time of algorithms is not so much and number of clusters for the same data set effects the process time too little.
In Table 3, similarities of clusters which were obtained as a result of clustering process are evaluated. If the similarity of centers is low clustering process will be so successful. When we evaluated the results of different algorithms, it is seen that similarities of centers are near for all algorithms but DBSCAN algorithm is more successful than other methods. When used data sets were reviewed, it was also seen that DBSCAN algorithm couldn’t perform clustering process in every data sets. As a result, DBSCAN algorithm is not appropriate for data sets that have high differences in data. In such case determination of epsilon parameter is very difficult.

Table 3: Sum of centroid similarities of clusters

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Iris</td>
<td>9</td>
<td>149.85</td>
<td>149.86</td>
<td>149.85</td>
<td>148.70</td>
<td>148.71</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>149.85</td>
<td>-</td>
<td></td>
<td>148.82</td>
<td>148.88</td>
<td>131.89</td>
<td></td>
</tr>
<tr>
<td>Wine</td>
<td>3</td>
<td>177.80</td>
<td>177.80</td>
<td>177.81</td>
<td>177.83</td>
<td>177.83</td>
<td>177.83</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>177.82</td>
<td>177.82</td>
<td>177.82</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>177.86</td>
<td>177.86</td>
<td>177.87</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Glass</td>
<td>2</td>
<td>209.48</td>
<td>209.41</td>
<td>209.41</td>
<td>209.41</td>
<td>205.74</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>211.84</td>
<td>211.74</td>
<td>211.84</td>
<td>211.69</td>
<td>211.95</td>
<td>171.86</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>212.83</td>
<td>212.83</td>
<td>212.69</td>
<td>212.72</td>
<td>212.61</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Heart-Diseas</td>
<td>2</td>
<td>301.42</td>
<td>301.42</td>
<td>301.42</td>
<td>300.81</td>
<td>300.70</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>301.62</td>
<td>301.56</td>
<td>301.62</td>
<td>300.84</td>
<td>300.82</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>301.78</td>
<td>301.84</td>
<td>301.85</td>
<td>300.87</td>
<td>300.86</td>
<td>55.75</td>
<td></td>
</tr>
<tr>
<td>Water</td>
<td>5</td>
<td>526.80</td>
<td>526.81</td>
<td>526.79</td>
<td>526.03</td>
<td>526.04</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>526.82</td>
<td>526.82</td>
<td>526.82</td>
<td>526.05</td>
<td>526.07</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>526.83</td>
<td>526.85</td>
<td>526.82</td>
<td>526.05</td>
<td>526.09</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Fish</td>
<td>2</td>
<td>726.95</td>
<td>726.95</td>
<td>726.95</td>
<td>688.77</td>
<td>687.84</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>750.30</td>
<td>751.39</td>
<td>750.29</td>
<td>690.49</td>
<td>689.78</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>752.45</td>
<td>758.48</td>
<td>757.92</td>
<td>691.09</td>
<td>690.91</td>
<td>687.54</td>
<td></td>
</tr>
<tr>
<td>Isolet</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1136.89</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1234.00</td>
<td>1234.00</td>
<td>1234.00</td>
<td>1165.24</td>
<td>1144.72</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1274.67</td>
<td>1259.77</td>
<td>1259.74</td>
<td>1169.90</td>
<td>1161.63</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>
Table 4: Sum of Squared Errors of Clustering Process

<table>
<thead>
<tr>
<th>Dataset</th>
<th># of Clusters</th>
<th>K-Means</th>
<th>Iterative K-Means</th>
<th>Iterative Multi-K Means</th>
<th>K-Medoids</th>
<th>Farthest First Clustering</th>
<th>DBSCAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iris</td>
<td>9</td>
<td>57.64</td>
<td>57.53</td>
<td>53.27</td>
<td>321.06</td>
<td>315.01</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>54.11</td>
<td>-</td>
<td>286.11</td>
<td>268.95</td>
<td>265.93</td>
<td></td>
</tr>
<tr>
<td>Wine</td>
<td>3</td>
<td>22632.55</td>
<td>22632.55</td>
<td>21989.30</td>
<td>67576.07</td>
<td>67576.07</td>
<td>67576.07</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>13071.70</td>
<td>12825.17</td>
<td>12806.69</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>8621.65</td>
<td>8659.13</td>
<td>7599.18</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Glass</td>
<td>2</td>
<td>410782.58</td>
<td>410699.26</td>
<td>410699.26</td>
<td>410699.26</td>
<td>646858.54</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>183758.10</td>
<td>183879.12</td>
<td>183758.10</td>
<td>184353.19</td>
<td>257950.79</td>
<td>799782.81</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>104375.47</td>
<td>104375.47</td>
<td>104365.58</td>
<td>104310.72</td>
<td>135295.57</td>
<td>-</td>
</tr>
<tr>
<td>Heart-Disease</td>
<td>2</td>
<td>1210711.49</td>
<td>1210711.49</td>
<td>1210711.49</td>
<td>2027583.39</td>
<td>2084976.16</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>785706.62</td>
<td>825521.63</td>
<td>785706.62</td>
<td>2019915.36</td>
<td>2031928.89</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>704137.84</td>
<td>698950.49</td>
<td>667067.95</td>
<td>2000107.90</td>
<td>2013695.69</td>
<td>189279.47</td>
</tr>
<tr>
<td>Water</td>
<td>5</td>
<td>1.45</td>
<td>8.72</td>
<td>7.24</td>
<td>1.34</td>
<td>1.44</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>2.73</td>
<td>2.73</td>
<td>2.38</td>
<td>1.08</td>
<td>1.09</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>2.24</td>
<td>2.04</td>
<td>1.57</td>
<td>1.01</td>
<td>1.01</td>
<td>-</td>
</tr>
<tr>
<td>Pima</td>
<td>2</td>
<td>1.02</td>
<td>1.02</td>
<td>1.02</td>
<td>2.30</td>
<td>2.31</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>3.05</td>
<td>2.8</td>
<td>2.61</td>
<td>2.27</td>
<td>2.28</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>1.93</td>
<td>1.62</td>
<td>1.65</td>
<td>2.26</td>
<td>2.26</td>
<td>2.25</td>
</tr>
<tr>
<td>Isolet</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>352462.39</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>283497.79</td>
<td>283497.79</td>
<td>283497.79</td>
<td>335562.48</td>
<td>35050.20</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>250299.70</td>
<td>263343.92</td>
<td>250295.65</td>
<td>332182.18</td>
<td>338303.25</td>
<td>-</td>
</tr>
</tbody>
</table>

In Table 4 total error values which were obtained as a result of clustering process were given. Total error values allow us to have an idea about success of clustering process. At the same time it helps the determination of appropriate clusters in the data set. Multi K-Means algorithm within K-Means algorithm versions was produced the most accurate result. Because this algorithm works to find number of clusters that gives minimum error in different iterations for all numbers in the given range. Also if data set is appropriate for density-based clustering, it was seen that DBSCAN has minimum error when compared to other methods. Other methods generally showed results in similar error value.

5. DISCUSSION OF RESULTS AND CONCLUSION

In this study, different clustering algorithms were compared in terms of processing time, sum of centroid similarities, sum of squared errors of different datasets. As a result of this study, it is understood that K-Medoids algorithm produce more accurate results rather than K-Means but it needs more time and memory. K-Means algorithm may give different results for different cluster values because it is not a decided clustering algorithm. Farthest First algorithm produces similar results with K-Means. For DBSCAN algorithm distribution of data in selected data set has a major effect. It is also shown that choosing appropriate number of cluster for related data set is really important for correctness of clustering process.
Considering all methods, DBSCSN algorithm gives the most accurate results and K-Means is the fastest algorithm.

REFERENCES

AUTHOR PROFILES:

Fidan Kaya Gülağız has received her BEng. in Computer Engineering from Kocaeli University in 2010 and ME. in Computer Engineering from Kocaeli University in 2012. She is currently working towards Ph.D. degree in Computer Engineering from Kocaeli University, Turkey. Also, she is currently a Research Assistant of Computer Engineering Department at Kocaeli University in Turkey. Her main research interests include data synchronization, distributed file systems and data filtering methods.

Suhap Şahin has received his BEng. in Electrical, Electronics and Communications Engineering from Kocaeli University in 2000. He is an associate professor at the Kocaeli University Computer Engineering Department in Turkey. He has a Ph.D. at the Kocaeli University Electrical, Electronics and Communications Engineering. His main research interests include beamforming, FPGA, OFDM and wireless communication.